返回第34章 丁仪 可控核聚变(2 / 2)我,面壁者助手首页

即使我们现在能成功建造出,它也是最初级的聚变方式,它的聚变原料来源就是一个大问题。即使我们解决这一切问题,它也是不可能短时间进入实用阶段,最中间还有很大一段路要走。

现在的聚变能量利用方式说白了还是在烧开水,我们感觉一切都已经非常接近成功了,但是感觉就是欠缺了什么?

而且这样的可控核聚变就算成功了,暂时对人类可能也没有太大的作用,人类需要的成功,我们却迟迟给不了他们。

至于未来战舰的动力,也就是可控核聚变装置小型化更是遥遥无期。”

林森:“也就是现在的可控核聚变实现途径就是在试错,如同爱迪生发明灯泡一样,尽管这个故事不那么真实,但是试错可能是唯一的途径了,就看我们什么时候可以找到那根灯芯了。

丁博士,你可以介绍下可控核聚变的途径吗?另外,你对可控核聚变的途径有其他的猜想或研究吗?或者是否设想过其他的实现途径?我希望你们近期还是从事寻找新的可控核聚变途径的研究,你只管想象,任何想法都可以提出。”

丁仪:“你说的没错,他们就是在试错。目前使用的聚变方式还是磁约束型核聚变和惯性约束型核聚变,现在他们都还是一直在改进这两种方式。我也设想过一些其他方式,并提出过一些新的途径也被证明不可行,我现在每天脑中几乎都是新的可控核聚变实现途径。

对可控核聚变取决于三大要素的配合:温度,密度(等离子体),和足够可控时间。

磁约束型核聚变,如托卡马克、仿星器、磁镜、反向场、球形环等装置都是在提高离子体的速度(反应温度),其中最关键的是亿度高温等离子体的在磁约束下的拓扑状态控制,目前人类对此研究并不多,无法为此建立准确模型。

惯性约束型核聚变,也叫激光约束型核聚变,简单理解就是将聚变材料做成一个聚变靶丸,在它的四周打上强力激光,近似球对称压缩热核燃料靶丸,靶丸小球内气体受挤压而压力升高,并伴随着温度的急剧升高。

当温度达到所需要的点火温度(大概需要几十亿度)时,靶丸小球内气体便发生聚变爆炸,并产生大量热能。其中关键的是这种爆炸过程时间很短,只有几个皮秒,而且现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍。

所以说可控核聚变原理都比较简单,只是条件太高了,高到了难以企及的地步。”

林森:“丁仪博士,我对可控核聚变的途径知道的比较少,但我认为这两条路走通的可能性不是很大。按照上述方式,无论是对材料,还是对控制空都超出现今人类无法达到的高度,必须走其他的路才有可能了。”

林森知道原时间线,在不久的将来人类就建造成功,但磁约束型和惯性约束型这两条路基本没有走通的可能了。那么要不丁仪还有其他路,要不就只能借用“太阳”的道路。